[PDF][PDF] Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells

A Moussaieff, M Rouleau, D Kitsberg, M Cohen, G Levy… - Cell metabolism, 2015 - cell.com
A Moussaieff, M Rouleau, D Kitsberg, M Cohen, G Levy, D Barasch, A Nemirovski
Cell metabolism, 2015cell.com
Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here
we report the earliest metabolic changes induced during the first hours of differentiation.
High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring
during early differentiation. Metabolic and transcriptional analyses showed that pluripotent
cells produced acetyl-CoA through glycolysis and rapidly lost this function during
differentiation. Importantly, modulation of glycolysis blocked histone deacetylation and …
Summary
Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here we report the earliest metabolic changes induced during the first hours of differentiation. High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring during early differentiation. Metabolic and transcriptional analyses showed that pluripotent cells produced acetyl-CoA through glycolysis and rapidly lost this function during differentiation. Importantly, modulation of glycolysis blocked histone deacetylation and differentiation in human and mouse embryonic stem cells. Acetate, a precursor of acetyl-CoA, delayed differentiation and blocked early histone deacetylation in a dose-dependent manner. Inhibitors upstream of acetyl-CoA caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our results show a metabolic switch causing a loss of histone acetylation and pluripotent state during the first hours of differentiation. Our data highlight the important role metabolism plays in pluripotency and suggest that a glycolytic switch controlling histone acetylation can release stem cells from pluripotency.
cell.com