Reduced lymphatic reserve in heart failure with preserved ejection fraction

G Rossitto, S Mary, C McAllister, KB Neves… - Journal of the American …, 2020 - jacc.org
G Rossitto, S Mary, C McAllister, KB Neves, L Haddow, JP Rocchiccioli, NN Lang
Journal of the American College of Cardiology, 2020jacc.org
Background Microvascular dysfunction plays an important role in the pathogenesis of heart
failure with preserved ejection fraction (HFpEF). However, no mechanistic link between
systemic microvasculature and congestion, a central feature of the syndrome, has yet been
investigated. Objectives This study aimed to investigate capillary–interstitium fluid exchange
in HFpEF, including lymphatic drainage and the potential osmotic forces exerted by any
hypertonic tissue Na+ excess. Methods Patients with HFpEF and healthy control subjects of …
Background
Microvascular dysfunction plays an important role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link between systemic microvasculature and congestion, a central feature of the syndrome, has yet been investigated.
Objectives
This study aimed to investigate capillary–interstitium fluid exchange in HFpEF, including lymphatic drainage and the potential osmotic forces exerted by any hypertonic tissue Na+ excess.
Methods
Patients with HFpEF and healthy control subjects of similar age and sex distributions (n = 16 per group) underwent: 1) a skin biopsy for vascular immunohistochemistry, gene expression, and chemical (water, Na+, and K+) analyses; and 2) venous occlusion plethysmography to assess peripheral microvascular filtration coefficient (measuring capillary fluid extravasation) and isovolumetric pressure (above which lymphatic drainage cannot compensate for fluid extravasation).
Results
Skin biopsies in patients with HFpEF showed rarefaction of small blood and lymphatic vessels (p = 0.003 and p = 0.012, respectively); residual skin lymphatics showed a larger diameter (p = 0.007) and lower expression of lymphatic differentiation and function markers (LYVE-1 [lymphatic vessel endothelial hyaluronan receptor 1]: p < 0.05; PROX-1 [prospero homeobox protein 1]: p < 0.001) compared with control subjects. In patients with HFpEF, microvascular filtration coefficient was lower (calf: 3.30 [interquartile range (IQR): 2.33 to 3.88] l × 100 ml of tissue–1 × min–1 × mm Hg–1 vs. 4.66 [IQR: 3.70 to 6.15] μl × 100 ml of tissue–1 × min–1 × mm Hg–1; p < 0.01; forearm: 5.16 [IQR: 3.86 to 5.43] l × 100 ml of tissue–1 × min–1 × mm Hg–1 vs. 5.66 [IQR: 4.69 to 8.38] μl × 100 ml of tissue–1 × min–1 × mm Hg–1; p > 0.05), in keeping with blood vascular rarefaction and the lack of any observed hypertonic skin Na+ excess, but the lymphatic drainage was impaired (isovolumetric pressure in patients with HFpEF vs. control subjects: calf 16 ± 4 mm Hg vs. 22 ± 4 mm Hg; p < 0.005; forearm 17 ± 4 mm Hg vs. 25 ± 5 mm Hg; p < 0.001).
Conclusions
Peripheral lymphatic vessels in patients with HFpEF exhibit structural and molecular alterations and cannot effectively compensate for fluid extravasation and interstitial accumulation by commensurate drainage. Reduced lymphatic reserve may represent a novel therapeutic target.
jacc.org