Cardiac progenitor cell cycling stimulated by pim-1 kinase

CT Cottage, B Bailey, KM Fischer, D Avitabile… - Circulation …, 2010 - Am Heart Assoc
CT Cottage, B Bailey, KM Fischer, D Avitabile, B Collins, S Tuck, P Quijada, N Gude…
Circulation research, 2010Am Heart Assoc
Rationale: Cardioprotective effects of Pim-1 kinase have been previously reported but the
underlying mechanistic basis may involve a combination of cellular and molecular
mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1
mediated cardioprotection provides important insights for designing therapeutic
interventional strategies to treat heart disease. Objective: Effects of cardiac-specific Pim-1
kinase expression on the cardiac progenitor cell (CPC) population were examined to …
Rationale: Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease.
Objective: Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity.
Methods and Results: Transgenic mice created with cardiac-specific Pim-1 overexpression (Pim-wt) exhibit enhanced Pim-1 expression in both cardiomyocytes and CPCs, both of which show increased proliferative activity assessed using 5-bromodeoxyuridine (BrdU), Ki-67, and c-Myc relative to nontransgenic controls. However, the total number of CPCs was not increased in the Pim-wt hearts during normal postnatal growth or after infarction challenge. These results suggest that Pim-1 overexpression leads to asymmetric division resulting in maintenance of the CPC population. Localization and quantitation of cell fate determinants Numb and α-adaptin by confocal microscopy were used to assess frequency of asymmetric division in the CPC population. Polarization of Numb in mitotic phospho-histone positive cells demonstrates asymmetric division in 65% of the CPC population in hearts of Pim-wt mice versus 26% in nontransgenic hearts after infarction challenge. Similarly, Pim-wt hearts had fewer cells with uniform α-adaptin staining indicative of symmetrically dividing CPCs, with 36% of the CPCs versus 73% in nontransgenic sections.
Conclusions: These findings define a mechanistic basis for enhanced myocardial regeneration in transgenic mice overexpressing Pim-1 kinase.
Am Heart Assoc