Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy.

R Mounier, L Lantier, J Leclerc, A Sotiropoulos… - FASEB …, 2009 - inserm.hal.science
R Mounier, L Lantier, J Leclerc, A Sotiropoulos, M Pende, D Daegelen, K Sakamoto
FASEB journal, 2009inserm.hal.science
Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the
suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator
of muscle growth. The purpose of this investigation was to determine the role of the
AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle
hypertrophy. We found that AMPKalpha1 (-/-) primary cultured myotubes and myofibers
exhibit larger cell size compared with control cells in response to chronic Akt activation. We …
Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of muscle growth. The purpose of this investigation was to determine the role of the AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle hypertrophy. We found that AMPKalpha1(-/-) primary cultured myotubes and myofibers exhibit larger cell size compared with control cells in response to chronic Akt activation. We next subjected the plantaris muscle of AMPKalpha1(-/-) and control mice to mechanical overloading to induce muscle hypertrophy. We observed significant elevations of AMPKalpha1 activity in the control muscle at days 7 and 21 after the overload. Overloading-induced muscle hypertrophy was significantly accelerated in AMPKalpha1(-/-) mice than in control mice [+32 vs. +53% at day 7 and +57 vs. +76% at day 21 in control vs. AMPKalpha1(-/-) mice, respectively]. This enhanced growth of AMPKalpha1-deficient muscle was accompanied by increased phosphorylation of mTOR signaling downstream targets and decreased phosphorylation of eukaryotic elongation factor 2. These results demonstrate that AMPKalpha1 plays an important role in limiting skeletal muscle overgrowth during hypertrophy through inhibition of the mTOR-signaling pathway.
inserm.hal.science