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Introduction
Viral infections during pregnancy have been associated with 
adverse pregnancy outcomes and birth defects in the offspring; 
unfortunately, we have limited therapeutic or preventative tools 
to protect the mother and the fetus during pandemics. Viruses 
rarely cross the placental barrier, but when the virus does reach 
the fetus, it can result in severe birth defects such as microcepha-
ly or even fetal death. It has been well established that viral infec-
tion of the cells at the maternal-fetal interface can affect placental 
function, which may result in pregnancy complications such as 
miscarriage, intrauterine growth restriction (IUGR), or preterm 
birth (PTB). Furthermore, a growing body of evidence suggests 
that viral infection of the decidua and/or placenta may result in 
the production of soluble immune factors that could reach the 
fetus and might affect fetal development.

The maternal-fetal interface includes multiple cell types that 
contribute to the development of the fetus, regulation of the mater-
nal immune system, and protection against microorganisms. The 
maternal side is made from the stroma of the uterus, or decidual 
cells, and a wide range of immune cells including NK cells, mac-
rophages, DCs, and Tregs. The fetal side consists of the placental 
villus, which contains fetal blood vessels surrounded by fibroblasts 
and fetal macrophages (known as Hofbauer cells), cytotropho-
blasts, and, finally, the multinucleated syncytiotrophoblast, an 
epithelial covering that is in direct contact with maternal blood 
(Figure 1). In addition, the extravillous trophoblast is in direct con-
tact with cells from the decidua, including maternal immune cells, 
endothelial cells, and microorganisms present in the uterus.

Many factors can influence the incidence, longevity, and 
severity of viral infection at the maternal-fetal interface. Viruses 
gain access to the cells within the decidua and placenta by ascend-

ing from the lower reproductive tract or via hematogenous trans-
mission (1, 2). Following access to the upper reproductive tract, 
viral tropism for the decidua and/or placenta is then dependent 
on both viral entry receptor expression by the cellular component 
of these tissues and the specific maternal immune response to the 
virus. These factors vary by cell type and gestational age and can 
be affected by changes to the in utero environment and maternal 
immunity. Therefore, the virus-host interaction during pregnancy 
is complex and highly variable (Figure 1).

Innate immune cells, including NK cells, DCs, and macro-
phages, and the maternal humoral response play a critical role in 
regulating and controlling the infection and, consequently, deter-
mining its severity. Innate cells phagocytize virus complexes and 
can kill infected cells, while antibodies facilitate viral clearance. 
Contrary to nonpregnant women, during pregnancy, the function 
of the innate immune system is influenced and regulated by the 
fetal/placenta unit. In summary, the route of viral transmission, 
abundance of permissive cell types (which changes with gestation-
al age), and maternal immune function all influence viral infec-
tions at the maternal-fetal interface.

Viral infection at the maternal-fetal interface
The most common virus identified to date at the maternal-fetal 
interface is CMV, a member of the Herpesviridae family. CMV inter-
acts with ubiquitously expressed heparin sulfate on the cell surface 
and then penetrates cells via interactions with integrin subunits (3, 
4). Roles for other receptors, such as EGFR and PDGFR-α, have 
also been reported, but those findings have been contradicted, 
and the role of these receptors in CMV infection remains disputed 
(5, 6). The known receptors for CMV entry are expressed by mul-
tiple cell types, including epithelial cells, endothelial cells, mus-
cle cells, fibroblasts, trophoblasts, and monocytes/macrophages; 
therefore, these cells can all be permissive to CMV infection. At 
the maternal-fetal interface, specifically, CMV is more likely to be 
detected in the maternal decidua, where it infects and replicates 
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alyzing viral transcytosis to the underlying cytotrophoblast (2, 9, 
10). As discussed below, coinfections, or polymicrobial infections, 
are an important factor in allowing pathogens to damage the syn-
cytial layer, thereby permitting the virus to cross and reach the 
fetal side. Alternatively, the presence of other pathogens could 
activate latent CMV in the decidual-immune reservoir (7).

Another member of the Herpesviridae family, herpes simplex 
virus (HSV), is estimated to infect the decidua and/or placenta in 
6% to 14% of pregnancies (7, 11) and, like CMV, is more likely to 
be identified in the decidua than in the placenta (7, 12). Decidu-
itis and villitis have been described in relation to HSV infections 
(13), which may explain the association between primary mater-
nal infection with HSV and increased risk of miscarriage and fetal 
death (14). Heparan sulfate, herpesvirus entry mediator A (HveA), 
HveB, and HveC are the entry receptors for HSV-1 and -2. They 
are not expressed on the surface of the syncytiotrophoblast but 
are expressed on the extravillous trophoblast (15, 16). Finger-Jar-
dim et al. reported a 9% prevalence of HSV-2 in placental sam-

in endothelial cells, invasive cytotrophoblast, fibroblasts, and the 
glandular epithelium (7, 8), than in the placenta. Decidual infec-
tion can occur in the first, second, or third trimester and is affected 
by variations in local maternal innate immune cells. For example, 
in pregnant women, higher levels of local DCs and macrophages 
containing phagocytosed viral proteins in the decidua are asso-
ciated with milder infection, potentially because of the robust 
innate response to infection in these individuals (7, 8).

Interestingly, placental CMV infection is less common than 
decidual infection. This is because the syncytiotrophoblast does 
not express the receptors for CMV entry, and the virus must tra-
verse this layer to infect the susceptible cytotrophoblast localized 
underneath the syncytiotrophoblast layer. Because of this tissue 
organization, the severity of infection is dependent on maternal 
factors such as humoral immunity and microbial coinfections of 
the placenta (7–9) that would promote the breach of the syncy-
tiotrophoblast layer. Low-avidity neutralizing IgG can bind the 
virus and interact with syncytiotrophoblast Fc receptors, thus cat-

Figure 1. Cell types at the maternal-fetal 
interface. Maternal and fetal cells make up the 
maternal-fetal interface. The maternal decidua 
consists of pregnancy-specific differentiated 
stromal cells that house the maternal blood ves-
sels and maternal immune cells including T cells, 
uterine NK (uNK) cells, macrophages, and DCs. 
Extravillous cytotrophoblasts (evCYTs) invade the 
decidua and reach the maternal spiral arteries, 
establishing nutrient circulation between the 
embryo and the mother. The placental villus is in 
direct contact with the maternal blood and thus 
facilitates gas, nutrient, and communication 
exchange between the mother and developing 
fetus. It is formed by a double cell layer con-
sisting of syncytiotrophoblasts and cytotropho-
blasts. The villus contains the fetal blood vessels 
that are surrounded by fibroblasts and fetal 
macrophages (termed Hofbauer cells).
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the association between prenatal rubella infection and cataract in 
1941 (25). There is now a large body of work demonstrating that 
direct infection of the fetus with CMV, HSV-2, or rubella can cause 
major neurosensory deficits (26–28), learning disabilities, and 
psychiatric disorders (29–31). Microcephaly has also been associ-
ated with fetal CMV and ZIKV infection (ZIKV is further discussed 
below) (32, 33). While these examples of direct infection of the 
fetus have the most severe individual consequences, in utero fetal 
viral infections are rare. Neonatal HSV infection has been identi-
fied in approximately 0.06% of neonates in the US, and only 5% 
of those infections are associated with intrauterine infection (34). 
Fetal infection with CMV has an estimated prevalence of 0.5% 
(28), and congenital rubella has been virtually eliminated in the 
US (35–37). Conversely, the prevalence of maternal infection or 
reactivation with CMV, HSV-2, or influenza is high (60%–90%, 
18%–22%, and 40%, respectively) (8, 11, 27, 38–43). All these data 
support the notion that the placenta is actively preventing viral 
transmission to the fetus; however, viral infections of the placen-
ta, such as that by HSV-2, can occur in asymptomatic patients (11) 
and can induce systemic and local (placental/decidual) changes, 
which could still affect fetal development.

While viral infections that do not cross the placenta can affect 
fetal development, specifically neuronal development, the mech-

ples in asymptomatic patients at the time of delivery, and none 
reported genital herpes (11). These results suggest that HSV-2 can 
infect the placenta even in asymptomatic patients. The clinical 
and biological relevance of HSV-2 infection on those placentas is 
poorly understood, but as discussed below, the antiviral response 
originated at the placenta might reach the fetal side and influence 
fetal development.

The herpesviruses varicella zoster virus and EBV have been 
isolated in placental tissue and can infect the developing fetus, but 
cases are extremely rare, and little is known about the conditions 
for infection (12, 17). While not herpesviruses, human papilloma-
viruses HPV6, -11, -16, -18, and -31 can also infect the extravillous 
trophoblast (18, 19); HPV16 and HPV62 have been identified in 
gestational week-12 chorionic villus (20); and HPV16, -6, -83, and 
-39 have been characterized full-term placenta (19, 21–23). Zika 
virus (ZIKV) can also infect multiple cell types of the decidua and 
placenta and will be discussed in further detail in a later section.

Viral infections and fetal development
Viral infections that are capable of crossing the placental barrier 
and reaching the fetus can have devastating effects on fetal devel-
opment (24). Gregg first described the association between fetal 
viral infection and abnormal development when he discovered 

Figure 2. Mouse models of viral infection during pregnancy. Herpesviruses target the pregnant cervix and induce dramatic molecular and functional 
changes. (A) High sex hormone levels associated with pregnancy enhance cervical susceptibility to infection by causing upregulation in the cervix of integ-
rins and HA, receptors for herpes infection. (B) Infection of cervical epithelial cells results in activated SRC kinase, which stabilizes the ER. These changes 
are also associated with reduced expression of innate immune factors such as TLRs and defensins, as well as tissue remodeling in the stroma that is 
reminiscent of cervical ripening.
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polycytidylic acid (poly(I:C)) mouse model of maternal immune 
activation (MIA), maternal Th17 cells and their effector IL-17a 
were identified as critical drivers of maternal inflammation–asso-
ciated defects in fetal brain development and offspring behavior 
(49). In another study, using the same mouse model of MIA, it was 
determined that maternal IL-6 is also a critical effector (50). In this 
study, injecting the pregnant mother with IL-6 alone was able to 
affect offspring behavior (50). Furthermore, neutralizing maternal 
IL-6 with antibodies following poly(I:C) treatment prevented the 
exploratory and social deficits caused by the MIA (50).

To evaluate the role of viral infection in pregnancy and fetal 
development, we developed a murine model that consists of expos-
ing pregnant mice to murine herpes virus 68 (MHV68). We used the 
gammaherpes virus MHV68, since it is a latent DNA virus from the 
Herpesviridae family, the same family for nearly all of the viruses that 
infect the woman’s reproductive tract (HSV, CMV, EBV, and human 
herpesviruses HHV6 and HHV7). Our data suggested that, even 
in the absence of placental passage of the virus, the fetus could be 
adversely affected by viral invasion of the placenta (51). Morpholog-
ical analysis of fetuses from mothers with viral infections revealed 
major developmental changes. Despite the absence of fetal infec-
tion, the fetuses of infected mothers had delayed differentiation of 
the eyes, tails, and limbs (51). They also had hydrocephalus, defined 
by an increase in the subarachnoid space in the brain, but no chang-
es in the lateral ventricles, abnormal immune infiltration, or white 
matter damage (51). In the thoracic cavity, the pathological changes 
were characterized by the presence of hemorrhage inside the lungs 
and pericardium in all treated animals compared with the controls 
(51). Interestingly, we also observed a marked increase in the levels 
of fetal proinflammatory cytokines, including high levels of IFN-γ 
and TNF-α (51). Collectively, these findings provide strong evidence 
that, even when the virus does not reach the fetus, the fetus is still 
affected by the maternal immune response to the infection. This 
could be a result of the proinflammatory response of the placenta, 
or it could be due to other physiological changes in the mother or the 
placenta that are associated with the infection.

Viral infection and PTB: cervical infection
Cervical viral infection can increase the risk for PTB, defined as 
birth before 37 weeks’ gestation in women. Many viruses have 
been reported to infect the cervix, including HHV6, HHV7 (52), 
HSV (53), CMV (2, 54), EBV (55), and HPV (56), the most common 
viral infection of the cervix. Despite the prevalence, there were 
historical challenges associated with measuring viral infections 
in biological fluids and tissues from the lower reproductive track. 
With improved molecular techniques (sensitive PCR assays), we 

anism is still poorly understood. Original observations identified 
individuals from a Finnish birth cohort whose mothers were in 
their second trimester of pregnancy during the 1957 influenza pan-
demic as having an increased chance of being admitted to a psy-
chiatric hospital and diagnosed with schizophrenia (44). Although 
several studies following this initial observation had inconclusive 
results, when researchers identified mothers with influenza only 
using serological tests, they confirmed that influenza during early-
to-mid gestation was associated with an increased risk of schizo-
phrenia in the offspring (45, 46).

The epidemiologic studies referenced above indicate that 
maternal viral infections do not need to bypass the placental barrier 
to affect fetal development, and animal models have been invalu-
able tools for improving our understanding of this complex mech-
anism. With these models, potential maternal immune pathways 
and cytokines that could be responsible for behavioral changes in 
offspring have been identified (47, 48). Recently, in a polyinosinic-

Figure 3. Maternal viral infections and associated outcomes. Viral 
infection at the maternal-fetal interface can affect the mother as well 
as fetal development. The placenta functions as a physiologic and 
immunologic barrier to prevent viral transfer from the mother to the 
fetus. However, the immunologic response to infection might reach the 
fetal circulation or predispose the mother to abnormal responses to 
other microorganisms, with potential pregnancy complications such as 
IUGR, PTB, or even early pregnancy loss. Fetal infection can cause preg-
nancy loss and is associated with hearing loss, cataract, microcephaly, 
and psychiatric disorders in the fetus.
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KO mice, indicating that TLR3 signaling could cause PTB (71). 
Although these animal studies strongly support a role for viral 
infections in PTB, the majority of the clinical findings in patients 
with PTB are associated with an inflammatory process caused 
by bacterial infections (73). Our animal studies using a live virus 
have suggested that the actual mechanism associated with infec-
tion-induced PTB is more complex. We showed that pregnant 
mice injected with a DNA virus of the Herpesviridae family did not 
suffer PTB, but the virus infected the placenta (51). The viral infec-
tion of the placenta was associated with hyperresponsiveness to 
low concentrations of bacterial endotoxin, which led to PTB (51). 
At the molecular level, viral infections modified the function of 
pattern recognition receptors (PRRs), such as TLRs, and affected 
the quantity as well as the quality of their responses. We demon-
strated in both in vivo and in vitro studies that the virus downreg-
ulated the placental type I IFN, IFN-β, thus releasing the intrinsic 
regulation of TLR4-mediated proinflammatory cytokines in the 
trophoblast and allowing its cells to respond to the endotoxin chal-
lenge (ref. 74 and Figure 2B). Given these findings, we proposed 
that many of these infection-related pregnancy complications are 
polymicrobial in nature and involve an initial infection, viral (first 
hit), that modifies the response of the PRRs to the second infec-
tion, bacterial (second hit). Together, these pathogens result in a 
dysregulated inflammatory response that triggers preterm deliv-
ery. This mechanism needs further elucidation if we are to develop 
new methods for prevention and therapy.

Viral infections and early placental development
The invasive extravillous trophoblast is responsible for anchor-
ing the placenta and invading the maternal spiral arteries early in 
pregnancy, thus ensuring adequate blood flow and communication 
between mother and fetus (75–77). If these cells are dysregulated 
and this process disrupted, there is increased risk for pregnan-
cy complications (78). For example, first-trimester trophoblasts 
infected with CMV demonstrate reduced cell invasion, increased 
apoptosis (2, 79), higher expression of proinflammatory cyto-
kines (80), and reduced HLA-G expression (81, 82). CMV infec-
tion is also associated with fetal growth restriction, spontaneous 
pregnancy loss (82–84), and preeclampsia (85, 86), all of which 
are outcomes that can result from insufficient placental develop-
ment. HSV infection also results in loss of HLA-G (87), cell death, 
and reduced human chorionic gonadotropin secretion (88). These 
changes in trophoblast function could explain why both HSV-1 and 
HSV-2 have been associated with spontaneous pregnancy loss (89) 
and IUGR pregnancies (82, 84). AAV2 also induces trophoblast 
apoptosis and reduces cell invasion (18, 90, 91) and is associated 
with spontaneous miscarriage, stillbirth (92), and preeclampsia 
(82, 91, 93). Collectively, these results demonstrate that viral infec-
tion of the trophoblast can alter placental function and could result 
in suboptimal conditions for fetal growth and development.

Viral infection and maternal health
Pregnant women have higher mortality rates and complications 
associated with viral infections compared with the general popu-
lation, but the reason for the increased susceptibility is not well 
defined (94). The maternal immune response can be beneficially 
or detrimentally affected by pregnancy, depending on the envi-

are beginning to identify viral infections as potential risk factors for 
PTB (53, 56–58). For example, Zuo et al. showed that cervical HPV 
infection was associated with PTB (56), while others determined 
that genital HSV was also associated with PTB (53, 59). One of 
these studies included nearly 700,000 women and reported that 
untreated genital herpes infection nearly doubled the risk of PTB 
(53). In a mouse model, we have shown that the murine herpesvirus 
MHV68 targets the pregnant cervix and induces dramatic molec-
ular and functional changes in that tissue (58). We observed that 
high levels of sex hormones associated with pregnancy enhanced 
the susceptibility to cervical infection by upregulating cervical 
integrins (58). In addition, MHV68 infection of the cervix in preg-
nant mice reduced the expression of innate immune factors such 
as TLRs and defensins (58). These changes in the pregnant cervix 
were associated with increased ascending infection compared with 
that detected in uninfected pregnant mice (Figure 2A) (58). In a sep-
arate study, pregnant mice received HSV-2 intravaginally, which 
induced tissue remodeling in the stroma that was reminiscent of 
cervical ripening (60). Infection of human cervical epithelial cells 
with HSV-2 caused activation of SRC kinase, which stabilized the 
estrogen receptor (ER) (60). Interestingly, HSV-2 also upregulated 
hyaluronic acid (HA), which was dependent on the increased ER 
levels (60). Since HA is associated with changes in tissue structure 
and function, we postulate that viral infection of cervical epithe-
lial cells results in increased HA synthesis, thus affecting stromal 
architecture and premature cervical ripening (Figure 2A).

Viral infection and PTB: in utero or systemic 
infection
Several studies have demonstrated an association between mater-
nal, placental, or amniotic fluid viral detection and PTB. One 
case-control study identified a higher frequency of HPV in the 
extravillous trophoblast of women suffering from spontaneous 
PTB compared with women delivering at term, with no associa-
tion with low- or high-risk HPV strains (18). Another retrospective 
study examined over 2,400 cases of pregnancy over an 11-year 
period and discovered that cervical infection with high-risk HPV 
was highly associated with abnormal placental pathology and PTB 
(56). The presence of adeno-associated virus (AAV) in amniotic 
cells was also associated with an increased risk of PTB, although 
the authors did not determine whether AAV DNA was present in 
the placenta (61).

Maternal infections with influenza and hepatitis have also 
been associated with preterm labor. Data collected from the 2009 
influenza H1N1 pandemic revealed that women with H1N1 were 
more likely to have adverse pregnancy outcomes, such as spon-
taneous miscarriage and preterm birth (62–64). The rate of PTB 
correlated with maternal disease severity (65), and, moreover, 
vaccination against H1N1 reduced the rates of PTB and low birth 
weight (66–69). Maternal hepatitis B virus (HBV) infection was 
also associated with PTB, although the underlying mechanism 
was not determined (70).

The only mechanistic insights we have with regard to virus-as-
sociated PTB are those gleaned from animal models. Initial stud-
ies consisted of administration of TLR ligands, such as Poly(I:C), 
to pregnant WT or Tlr3-KO mice to mimic viral signaling during 
pregnancy (71, 72). This induced preterm labor in WT but not Tlr3-
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ronmental conditions and the stage of the pregnancy. It is well 
established that the immunological changes associated with preg-
nancy can result in the amelioration of some autoimmune disor-
ders, such as multiple sclerosis or rheumatoid arthritis (95), but 
can also increase the severity of several types of viral infections. 
For example, pregnant women have higher mortality rates asso-
ciated with varicella virus infection, which is 10 times more likely 
to be complicated by pneumonia during pregnancy (94, 96, 97). 
They are more susceptible to rubeola (also known as measles), and 
the infection is more likely to cause death (98, 99). Furthermore, 
during the 2009 H1N1 influenza pandemic, pregnant women 
developed more severe flu-related complications, in some cases 
leadings to hospitalization and death, when compared with the 
general population (41, 62, 64, 100–105), and this was confirmed 
to have also occurred during the 1918 H1N1 (106, 107) and 1957 
H5N1 pandemics (108, 109).

Despite these clear associations between pregnancy and 
virus-induced morbidity, there is still little known about how preg-
nancy affects the mother’s response to viral pathogens. There is 
growing evidence suggesting that the placental response to virus 
is directly responsible for disease severity. For example, pregnant 
women infected with Lassa fever had higher mortality rates than 
did nonpregnant women with the infection (110). The Lassa virus 
replicates at very high levels in the placenta (111), and the risk of 
maternal death increases with the length of gestation (110) and 
the size of the placenta. Furthermore, evacuation of the uterus sig-
nificantly improves the mother’s chances of survival (110). Since 
the placenta regulates the maternal immune system and can itself 
respond to pathogens, it is probably an important mediator of the 
maternal response to viral infection, regardless of whether the pla-
centa is directly infected (112).

ZIKV and pregnancy
The recent ZIKV outbreak in Brazil has refocused our attention 
on the risks associated with viral infections during pregnancy. 
This virus, a member of the family Flaviviridae, is transmitted 
by mosquito bite and is also potentially sexually transmitted 
(113–117). While historically an infection has been described as 
causing symptoms ranging from fever and rash to Guillain-Barre 
syndrome (118–124), during the most recent outbreak there was 
also a startling increase in the incidence of fetal brain and CNS 
abnormalities when mothers acquired the virus during pregnancy 
(32, 125–134). A causal link between ZIKV and these defects was 
established when the ZIKV genome was identified in the amniotic 
fluid of women whose fetuses had microcephaly detected during 
fetal ultrasound (125–127, 132, 133, 135). Researchers also identi-
fied ZIKV in placentas from miscarriages and IUGR pregnancies, 
suggesting that ZIKV also affects placental function and could 
increase the risk of several pregnancy complications (126, 132, 
136). There is now a global push to understand how ZIKV affects 
pregnancy and fetal brain development.

Like all viruses, ZIKV requires cellular expression of receptors 
that permit viral binding and entry into that cell. Several of these 
receptors have been identified, including the TAM kinase recep-
tors AXL and TYRO3, in addition to the C-type lectin DC-SIGN 
and the glycoprotein TIM1 (137). An important study by the Harris 
and Pereira laboratories recently determined that AXL and TYRO3 

receptors had variable expression in placental cells that could 
be affected by the culture of primary cells. These proteins were 
expressed by amniotic epithelia, and AXL was also expressed by 
the cytotrophoblast, Hofbauer cells, and placental fibroblasts, but 
this expression was variable depending on the gestational stage, the 
donor, and whether the cells were cultured (138). In contrast, TIM1 
was invariably expressed at mid- and late gestation in amniotic epi-
thelia, syncytiotrophoblast, Hofbauer cells, and invasive cytotro-
phoblast (138). They also examined ZIKV in primary placental cells 
and explants. Amniotic epithelia from mid-gestation had higher 
viral titers than did late-gestation epithelia, and mid-gestation 
proliferating cytotrophoblast and invasive cytotrophoblast were 
also viral targets (138). Of note, infection of the cytotrophoblast 
in early gestation was associated with loss of proliferation (138), 
which could contribute to ZIKV-associated miscarriage and growth 
restriction. Finally, this study found that placental fibroblasts and 
Hofbauer cells were infected by ZIKV (138), with similar findings 
reported by others (139). These cells are closely associated with the 
fetal vasculature and could be responsible for harboring virus that 
can be more easily transmitted to the fetus.

We found that, unlike Flavivirus yellow fever, ZIKV infection 
induces apoptosis in first-trimester trophoblasts, prevents differenti-
ation of these cells into spheroid cultures, and induces the collapse of 
preformed trophoblast-derived spheroids (140). Furthermore, there 
is a growing interest in additional factors responsible for the terato-
genic effects observed in some patients infected with ZIKV. Since the 
seroprevalence of HSV-1 and HSV-2 was found to be higher in Bra-
zil’s North region (141), which reported the majority of microcephaly 
cases (132), we tested the hypothesis that the immune response to 
HSV-2 could have an effect on ZIKV infection. Indeed, we observed 
that HSV-2 infection of trophoblasts could enhance the expression of 
TAM receptors, which facilitate entry of ZIKV into the cell. Using a 
mouse model resistant to ZIKV infection, we demonstrate that HSV-
2 infection enhances placental sensitivity to ZIKV infection (140).

Microcephaly is the most severe birth defect associated with 
ZIKV and occurs via direct infection of the fetus during the first 
or second trimester of pregnancy (126, 132, 133, 135). The mech-
anism of virus-associated microcephaly is still unknown, but 
recent studies suggest that direct infection of the brain dysregu-
lates development. Viral antigens infecting glial cells and neurons 
have been identified in the brains of fetuses with microcephaly, 
and these infections are associated with microcalcifications (126, 
132, 136). Human cortical progenitors and human brain organoids 
can also be infected by ZIKV, which results in increased cell death 
and fewer proliferative zones, respectively (142). While animal 
models will require further validation, preliminary work with mice 
has demonstrated that similar placental types are susceptible to 
infection (143), the virus infects the fetal brain (113, 142), and fetal 
infection results in signs of microcephaly (113, 142). ZIKV infec-
tion of the lower reproductive tract of pregnant mice has also been 
shown to result in viral transmission to the fetus (113).

Conclusions and perspectives
Viral infections during pregnancy can affect fetal development 
and maternal mortality and are therefore a major clinical problem 
worldwide (Figure 3). Unfortunately, we do not yet have the appro-
priate tools to prevent infection and treat pregnant women during 
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pandemics such as influenza, Ebola, and ZIKV. The complexity of 
pregnancy and the immunologic changes associated with the accep-
tance of the fetus makes it challenging to improve the way we treat 
pregnant women. To progress, we must gain a better understanding 
of how viruses infect and affect the placenta at different stages of 
gestation and how direct and indirect fetal infections affect devel-
opment. We also need to determine why pregnant women respond 
differently to infections than do their nonpregnant counterparts. 
These studies will provide the first step toward improving the clini-
cal care provided to pregnant women and their unborn children.
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