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Introduction
Tauopathies are neurodegenerative diseases defined by the accu-
mulation of misfolded, insoluble tau protein aggregates in neuro-
nal and/or glial inclusions detectable in the brain at autopsy (1). 
These disorders are associated with diverse cognitive, motor, and 
neuropsychiatric abnormalities (2). Since tau pathologic burden 
strongly correlates with the severity of neurodegeneration as well 
as clinical phenomenology, tau has been the focus of therapeutic 
development, with multiple tau-directed therapeutics evaluated in 
clinical trials of Alzheimer’s disease and other tauopathies (3, 4).

Tau protein has a physiologic role as a soluble cytoplasmic protein 
interacting with microtubules, primarily through a microtubule-bind-
ing region (MTBR), to stabilize cytoskeleton and regulate axonal 
transport. It also affects a diverse array of other cellular processes, 
including synaptic function, gene expression, and energy metabolism 
(5). It is ubiquitously expressed in neurons (6–9). Tau’s neurodegen-
erative role rests on multiple lines of evidence. These include genet-
ic and autopsy data from human tauopathies, as well as nonclinical 
models of disease, such as induced pluripotent stem cell models and 
transgenic rodents that express mutant forms of tau associated with 
autosomal dominant frontotemporal dementia (FTD) (10, 11). Given 

that tau loss of function in animal models does not replicate human 
clinical phenotypes, and genome-wide screens (GWAS) for dis-
ease-associated mutations only identify gain-of-function mutations 
in the tau-encoding gene, MAPT, toxic gain of function has been 
historically suggested as the cause of tauopathies (12). Abnormal tau 
protein folding has been thought to lead to cytotoxic tau aggregation, 
accumulation of insoluble tau deposits, and subsequent neuronal loss 
that correlates with the clinical features of tauopathies during life in 
clinical-autopsy and clinical–tau PET studies (13, 14).

Here, we review normal and abnormal tau biology, tau genet-
ics, nonclinical models and their relationship to human disease, 
and hypotheses regarding proposed roles of tau in neurodegener-
ation. Despite strong evidence for a central pathologic role of tau 
in neurodegenerative tauopathies, recent human clinical trials of 
experimental tau-targeting therapies have failed to demonstrate 
clinical benefit, including drugs purported to interfere with patho-
logic aggregation, processing, and accumulation of tau (15, 16).

Despite a variety of potential explanations for the negative clini-
cal trials, the lack of efficacy of tau therapies tested to date has raised 
important questions regarding what is truly understood about tau 
and its suitability as a drug target in human neurodegenerative dis-
ease. Though tau therapeutics have improved pathology in nonclin-
ical models of tauopathy, do the recent negative human clinical trial 
results reflect flawed nonclinical models that inadequately model 
human disease? Are the models potentially predictive of therapeutic 
effects in human disease, but not the disease(s) in which the therapies 
were tested? Or is the lack of human efficacy explained by problems 
related to drug development, such as the wrong therapeutic target, 
inadequate dose, or lack of target engagement? Given these challeng-
es, is it time to rebalance the approach to development of tau thera-
peutics using nonclinical models and early-stage human clinical trials?
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Alzheimer’s disease (AD), chronic traumatic encephalopathy 
(CTE), and primary age-related tauopathy (PART).

Tauopathies can also be classified based on whether tau is the 
only aggregated protein found in the brain at autopsy or wheth-
er other proteins or pathogenic events are believed to initiate tau 
pathology. See Figure 1 for a summary. More than 20 different 
tauopathies have been identified, considered “primary,” in which 
tau is the only pathogenic protein found at autopsy, or “second-
ary,” in which tau pathology may accumulate due to the presence 
of another pathology (24).

Many data from cell culture and animal models, as well as 
human neuropathologic correlations, suggest that tau is likely 
to be a key pathogenic driver in most tauopathies. An alternate, 
less likely hypothesis is that tau pathology is a permissive factor 
or an epiphenomenon that correlates with disease pathophysiol-
ogy (25). Tauopathies where tau abnormalities definitely cause 
disease are autosomal dominant MAPT mutations, which lead to 
hereditary forms of frontotemporal lobar degeneration. Differ-
ent MAPT mutations are associated with specific clinical pheno-
types and biomarker profiles (26). Intron 10 (IVS10) and other 
MAPT mutations that increase 4R tau production often lead to 
movement disorder phenotypes similar to sporadic PSP or CBD 
(27). The strongest genetic risk factors for these sporadic prima-
ry tauopathies are in and around the MAPT gene, including the 
H1c subhaplotype, which is believed to increase MAPT mRNA 
expression (28). These human genetic data strongly support a 
central role for tau protein pathogenesis in CBD and PSP. Sep-
arately, GWAS evidence suggests that tau may play a role in the 
pathogenesis of synucleinopathies, such as Parkinson’s disease 
and multisystem atrophy, as well as certain forms of epilepsy, 
such as Dravet’s syndrome (29).

The trans-synaptic spread (“prion”) hypothesis of tau spread 
has garnered recent interest. This hypothesis is supported by the 
predictable progression intracerebrally of tau protein in various 
diseases, including AD, correlating with clinical symptoms (30). 
In AD, the spread of tau neurofibrillary tangles (NFTs) from 
entorhinal cortex to hippocampus to cortical regions prior to 
and in tandem with the development of clinical symptoms sug-
gests tau’s causal role (31). In animal and cell culture models, 
tau spreads in a prion-like manner, potentially explaining the 
stereotypical pattern of progression of tau accumulation in neu-
rodegenerative diseases like AD (31–33). Seeding-based mouse 
models expressing human MAPT gene (wild type or mutant) 
have demonstrated conversion of tau monomers to oligomers, 
and then to insoluble fibrils (34). In these seeding paradigms, 
mice are injected with lysates from human disease brain, trans-
genic mouse brain, or in vitro tau aggregates. The seeding can 
induce tau aggregation and pathology, which can be accelerated 
by amyloid pathology or age (35, 36). Pattern of distribution and 
affected cell type can be distinct between each tau strain, often 
mirroring findings of the initial disease (e.g., oligodendrocyte 
tau pathology in CBD mice) (37).

It is more difficult to connect tau burden with clinical presen-
tation in “incidental” tauopathies, which are often subclinical in 
nature, noted as co-pathologies or contributing pathologies in 
brain autopsies, with phosphorylated tau (p-tau) aggregates, and 
also termed age-related tauopathies (25). They include patholo-

Normal and abnormal tau biology
Six tau protein isoforms are encoded from the MAPT gene by 
alternative splicing of exons 2, 3, and 10 (17). In particular, exon 
10 alternative splicing can generate isoforms with three or four 
MTBR repeats (3R or 4R tau) (18). In the normal human adult 
brain, there are approximately equal concentrations of 3R and 4R 
tau, and changes in this ratio are associated with several neurode-
generative tauopathies, most commonly a relative overexpression 
of 4R tau (19).

Tau is one of several neuronal proteins responsible for pro-
moting cytoskeletal microtubule assembly and stability. It may 
also play other cellular roles through its ability to bind to nucleic 
acids, and its localization to the synapse and mitochondrial com-
partments (5). Normally, tau is soluble and natively unfolded, 
whereas it becomes insoluble when hyperphosphorylated, shift-
ing toward polymerization owing to an increase in β-sheet struc-
tures, which is also seen in other protein deposition disorders (20). 
Abnormal hyperphosphorylation and lack of tau clearance in the 
disease state is associated with diverse intraneuronal and glial 
inclusions (21). Decreased reversibility of hyperphosphorylation 
may contribute to pathogenesis in some tauopathies (22). There 
are many other posttranslational modifications of tau, including 
O-GlcNAcylation, acetylation, and glycosylation, that may influ-
ence the function and pathology of tau (9, 23).

Classification of tauopathies and 
conceptualization of tau dysfunction
Tauopathies are often classified based on the primary tau pro-
tein isoform deposited in the brain, including 3R tauopathies, 
exemplified by Pick’s disease (PiD); 4R tauopathies, such as 
progressive supranuclear palsy (PSP), corticobasal degenera-
tion (CBD), argyrophilic grain disease (AGD), and globular glial 
tauopathy (GGT); and combined 3R/4R tauopathies, such as 

Figure 1. The hypothesized role of tau in degeneration in various tauopathies 
(primary, secondary, and contributing). In particular, gain of function may lead 
to misfolding and spread in secondary tauopathies. A similar process may con-
tribute in other disorders (synucleinopathies, epilepsy) that are not classically 
considered tauopathies.
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Neuroinflammation related to tauopathy may also be an 
important mechanism leading to the development or progres-
sion of neurodegenerative disease (49, 50). Tau transgenic mice 
demonstrate colocalization of tau oligomers with astrocytes, 
microglia, and inflammatory cytokines (51). Moreover, it was 
recently shown that tauopathy mouse models have increased 
parenchymal cytotoxic T cells and microglia, and that depletion of 
either cell population prevents tau-mediated brain atrophy (50). 
Autophagy, mitophagy (the specific or selective removal of mito-
chondria), and neuroinflammation could have a synergistic effect 
in the development of tauopathy, particularly in AD (52).

Other possible routes of pathogenicity include the interac-
tion of tau with other proteins involved in neurodegenerative dis-
ease. Amyloid-β (Aβ) and tau in AD have a pathogenic interaction 
in human disease (53). In an AD mouse model expressing both 
human pathologies, tau and Aβ had opposite effects on cortical 
hyperactivity, and tau gene suppression was ineffective in rescu-
ing neuronal impairments, suggesting a complex interaction (54). 
Phase III trials in AD have suggested some efficacy of the Aβ-tar-
geting antibodies lecanemab and aducanumab in slowing rates 
of cognitive decline. Preliminary phase II trials with donanemab 
also demonstrate lowering of plasma p-tau, suggesting a down-
stream effect of these agents on AD tau pathology (55–57). Par-
allels between changes in plasma p-tau species and glial fibrillary 
acidic protein (GFAP) species in recent anti-amyloid antibody tri-
als (phase II in donanemab and phase III in lecanemab) raise the 
possibility that astroglial activation may mediate the interaction 
between Aβ plaques and soluble p-tau accumulation in AD. Fur-
ther evidence from a human presenilin-1 (PSEN1) mutation car-

gies akin to primary age-related tauopathy (PART), aging-related 
astrogliopathy (ARTAG), and argyrophilic grain disease (AGD). 
For example, AGD is often comorbid with AD, and has been 
associated with a prolonged period of amnestic mild cognitive 
impairment. However, in a significant proportion of cases it may 
be asymptomatic (38). The existence of these disorders challeng-
es the dogma that NFTs are always necessarily pathogenic, rath-
er than reactive or protective, as neurons with NFTs can survive 
for decades (39, 40).

Alternative conceptualizations of tau 
pathogenicity
Though toxic gain of function has been hypothesized to cause 
tauopathies, loss of tau physiological function could also contrib-
ute (12). Tau protein interacts with more than a hundred targets, 
including presynaptic, postsynaptic, and mitochondrial proteins 
(5, 41). Depletion of tau in cells with drug-induced DNA dam-
age increases cell senescence (42). Further, missense mutations 
in the MAPT gene reduce tau’s ability to bind microtubules and 
promote microtubule assembly, causing an FTD with Parkinson-
ism phenotype (43).

Other possible mechanisms of pathogenicity relate to down-
stream effects of tau dysfunction. One potential unifying hypoth-
esis is that age- and/or neurodegeneration-related loss of protein 
homeostasis leads to an inability to clear soluble tau species that 
may be pathogenic (44). There is evidence that tau acetylation 
leads to failed tau clearance by chaperone-mediated autophagy 
(45, 46). Nucleocytoplasmic and mitochondrial transport may 
also be impaired by AD-related tau (47, 48).

Figure 2. Review of mechanisms for various anti-tau therapeutics. 1. Genetically targeted therapies, such as antisense oligonucleotides (ASOs) and 
certain small molecules, can target tau production. 2. Small-molecule enzyme inhibitors can target posttranslational modifications (PTMs) such as acetyl-
ation (A), phosphorylation (P), and ubiquitination (Ub). 3. Methylene blue derivatives and other aggregation inhibitors were conceived of as targeting tau 
aggregation. 4. Tau clearance may be enhanced by molecules such as PROTACs (see above). 5. Immunotherapies (vaccines, anti-tau monoclonal antibod-
ies) target extracellular tau. 6. Neuroprotective agents, including antiinflammatory agents, could limit the downstream impacts of tau pathology. Figure 
adapted with permission from Neuroscience Letters (95) and from Martin Kampmann (UCSF) with permission.
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in combination with other genes. For example, the combination of 
H1 haplotype and apolipoprotein E (APOE) ε4 allele may increase 
risk of earlier-onset FTD (65). Many patients with PSP carry the 
H1 haplotype (66). A subhaplotype of H1, H1c, is linked to PSP 
and CBD (67, 68). It is also possible that the H2 haplotype may be 
protective against PSP and CBD, although the mechanisms are 
not well defined (69, 70). GWAS have also identified shared risk 
between CBD and PSP at different gene loci that do not involve the 
MAPT gene, including MOBP, CXCR4, GLDC, and EGFR (71).

Importantly, tau mutations can be influenced by other genet-
ic and epigenetic factors and may result in heterogeneous clinical 
syndromes that cannot be well replicated in nonclinical models 
(72). Because the tau protein sequence is not different between the 
H1 and H2 haplotypes, pathogenic effects may relate to differences 
in gene expression or post-transcriptional changes (73). In addi-
tion, the association between H1 haplotype and PSP is of some-
what uncertain global significance given the variable haplotype 
expression in different groups; for example, the H2 haplotype is not 
present in many Asian populations (74). Further, the H1 haplotype 
associated with PSP in non-Latinx White populations was not asso-
ciated with these symptoms in Guadeloupean patients (75).

Nonclinical (cell culture and animal) tauopathy 
models
Most evidence in support of tau-targeting therapies is based on 
experiments in nonclinical models. Historically, tau transgenic mice 
have been used because they have CNS cell types similar to those 

rier with a protective apolipoprotein E (apoE) mutation who had 
reduced tau accumulation and preserved cognition also implicates 
apoE in this process (58).

Tau, α-synuclein, and TAR DNA-binding protein 43 (TDP-
43) appear to have synergistic neurotoxic effects, based on their 
colocalization in humans at autopsy and in vivo model data (59, 
60). Based on spectroscopic analysis, there may be synergistic 
aggregation between tau and α-synuclein molecules that con-
tributes to neural cytotoxicity (61). Co-pathology of various pro-
teinopathies is very common in neurodegenerative disease and 
increases with age. This has therapeutic implications in tauopa-
thies since the presence of co-pathologies could mask tau-specif-
ic therapeutic effects (62).

Tau genetics
Mutations in MAPT are the cause of autosomal dominant forms 
of frontotemporal lobar degeneration (FTLD) that present most 
commonly with behavioral variant FTD, but sometimes with 
movement disorders. Other mutations, including R406W and 
V337M, produce mixed 3R/4R tau pathology similar to AD, pre-
senting with an amnestic AD-like syndrome and tau that binds AD 
tau PET tracers. Overall, nearly 60 mutations in MAPT have been 
identified as pathogenic (63, 64).

A chromosomal inversion in the MAPT region defines two 
major tau haplotypes, H1 and H2. Various reports have mentioned 
different possible effects of H1 and H2 haplotypes on age of onset 
of or risk for different neurodegenerative diseases, either alone or 

Table 1. Summary of clinical trials of potential therapeutic agents targeting tau

Agent Mechanism Population Phase Trial identifier Status
Lithium Anti–GSK-3β PSP, CBS I/II NCT00703677 Negative, not tolerated
Valproate Anti–GSK-3β PSP II NCT00385710 Negative, harmful
Tideglusib Anti–GSK-3β Mild–moderate AD, PSP II NCT01350362, NCT01049399 Negative, safe
Saracatinib Fyn inhibitor Mild AD II NCT02167256 Negative
LY3372689 OGA-targeting agent AD II NCT05063539 Active
Salsalate Acetylation inhibitor PSP, mild–moderate AD II NCT02422485, NCT03277573 Negative, pending
Methylene blue Tau aggregation inhibitor bvFTD, AD III NCT03446001, NCT01626378 Negative
Davunetide Microtubule stabilization PSP, AD (MCI) II/III NCT01110720 Negative
Abeotaxane (TPI-287) Microtubule stabilization AD, 4R tauopathies I NCT02133846 Negative, caused harm
Levetiracetam Hyperexcitability reduction AD II NCT02002819 Completed, exploratory benefit; 

results pending in MCI
BIIB080 Tau ASO PSP, mild AD I/II NCT05399888, NCT04539041 Pending, safe/well tolerated
NIO752 Tau ASO PSP, early AD I/Ib NCT04539041, NCT05469360 Pending
AADvac1 Tau-directed vaccine AD, nfvPPA II/I NCT03174886 Negative in AD, running in nfvPPA
ACI-35 Liposomal vaccine AD I/II NCT04445831 Active
Gosuranemab Tau N-terminal antibody PSP, early AD, CBS II NCT03352557, NCT03068468, 

NCT03658135
Negative

Tilavonemab Tau N-terminal antibody PSP, AD II NCT03413319 Negative
Zagotenemab Tau N-terminal antibody AD II NCT03518073 Negative
Semorinemab Tau N-terminal antibody AD II NCT03289143 Negative (see text)
Various mid-region–, MTBR-, and C-terminal–
targeting antibodies (bepranemab [UCB0107], 
E2814, LuAF87908, JNJ-63733657)

See text PSP, AD I/II NCT04658199, NCT03375697, 
NCT04149860, NCT04971733

Active

bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome; MCI, mild cognitive impairment; nfvPPA, non-fluent variant primary 
progressive aphasia.
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between mice and humans, which may impact both disease patho-
physiology and the action of peripherally administered drugs (88). In 
consequence, nonclinical models of tauopathy have at best partially 
approximated human neurodegeneration — they represent models 
of possibly relevant disease mechanisms.

Potential alternative models to study tauopathies are in devel-
opment, including the seeding-based mouse models referenced 
above. Narasimhan et al. injected pathologic tau from postmortem 
brains into non-transgenic mouse brains and observed differences 
in tau strain potency and pathologic localization between AD-tau, 
CBD-tau, and PSP-tau, such that only PSP-tau and CBD-tau pro-
duced glial inclusions, and PSP-tau produced much more exten-
sive tau pathology (89). These models may provide a tool in our 
arsenal to study the effects of tau treatments on specific aspects 
of pathology, and tau monoclonal antibodies (mAbs), such as 
gosuranemab, have been tested in induced pluripotent stem cell 
(iPSC) cultures seeded with disease-specific tau (90). To address 
contributions of multiple cell types and aging in vitro, tissue cul-
ture methods are becoming increasingly sophisticated. Organoids 
allow the coculture of multiple human cell types derived from 
iPSCs, and thus can model the interactions of human microglia, 
astrocytes, and neurons in vitro (91). Similarly, newer techniques 
to directly convert patient-derived skin fibroblasts into neurons 
(iNeurons) bypass the need for an iPSC step and maintain the 
aging signature of the sample patient skin biopsy (92).

A few rat models of AD also exist that more closely resemble 
human disease. Specifically, rats expressing mutated human APP 
develop age-dependent tau pathology and neurodegeneration (93, 
94). More research is needed to understand why rats more accu-
rately recapitulate human disease. While the increased cost of 
housing rats limits their use in many laboratories, rat models may 
prove a more useful tool for testing therapeutics.

Therapeutics targeting tau
Tau therapies have attempted to disrupt toxic gain of function (anti-
sense oligonucleotides/gene therapy), modulate posttranslational 
modification (PTM), disrupt tau aggregation, passively clear tau, and 
vaccinate against tau — see Figure 2 for a summary of the classes of 
therapeutic approaches (95). Conversely, approaches to replace loss 
of tau physiologic function (microtubule stabilizers) have also been 
assessed. Though these multiple classes of therapies have been eval-
uated as disease-modifying agents in human clinical trials (Table 1), 
therapeutically relevant mechanisms have not been validated.

Notably, the pathogenic tau species has not been definitively 
identified in living humans. Soluble tau, in the form of oligomers 
(including dimers), is being explored as a possible source of key 
neurotoxic species. Alternatively, insoluble tau in the form of both 
NFTs and other aggregates might represent the toxic species (96). 
In support of oligomeric soluble tau being important, injection of 
soluble tau oligomers into wild-type mouse brains, but not injec-
tion of tau fibrils or monomers, impaired memory (97).

In general, given the heterogeneity of tau isoforms, tau PTMs, 
and aggregate structures in tauopathies, some diseases may 
respond better than others to specific tau-targeting agents. There 
is cryo–electron microscopic evidence for differences in the struc-
tures of tau filaments in different diseases, including Pick’s dis-
ease, AD, chronic traumatic encephalopathy (CTE), CBD, globular 

of humans and allow for in vivo manipulation of cellular systems. 
Unfortunately, the predictive value of therapeutic efficacy in mouse 
models is limited, as large therapeutic effects seen in tau transgenic 
mouse models have not been replicated in human clinical trials.

Mouse models largely do not develop the neurodegeneration 
and insoluble tau pathology seen in humans (76, 77). There is no 
evidence of murine tau fibril formation with age, and very few 
mouse models accumulate endogenous murine Aβ (78, 79). As a 
result, transgenic mouse models to study neurodegeneration must 
express mutant human proteins that lead to rare, severe early-on-
set disease in humans. A further discrepancy, specifically for AD, 
is that even the most aggressive mouse models of Aβ accumula-
tion and early plaque development (e.g., the 5xFAD mouse) do 
not develop secondary murine tau tangle formation or substantial 
neuronal loss, as seen in human AD (80).

The most common transgenic tau mouse models express 
familial FTLD–associated (but not AD-associated) MAPT muta-
tions (e.g., P301L, P301S) (81–83). These models accumulate 
hyperphosphorylated tau fibrils and develop phenotypically vari-
able age-dependent synaptic dysfunction, cognitive impairment, 
and neurodegeneration. Restricting expression of mutated human 
tau to entorhinal cortex via genetic manipulations results in prop-
agation of tau along connected limbic structures, supporting the 
“prion-like” hypothesis of tau spread (35). However, there are 
numerous limitations with these mouse models. First, transgenic 
mice often express much higher levels of mutated tau throughout 
the lifespan, which might induce compensatory changes that could 
either mask pathology or cause phenotypes irrelevant to human 
disease. Additionally, transgenic tau models only express one of 
six potential tau isoforms, typically a 4R tau, thus eliminating any 
potential contribution of alternative splicing or 3R/4R ratios to 
disease processes. As well, many tau models produce specific tau 
aggregate strains, which may not be relevant to the human disease 
in which a particular therapy is eventually tested.

With this knowledge, close attention should be paid to recent 
tau-directed antibody failures. For example, nonclinical testing 
of semorinemab was in a mouse model expressing P301L tau, 
a mutation found in FTLD (usually a behavioral variant FTD 
phenotype), with subsequent clinical testing in AD patients 
(84). Conversely, tilavonemab was tested in the P301S mod-
el, which expresses an FTLD-only mutation, and then tested 
in mild-to-moderate PSP and AD patients (4, 85). If tau strain 
or aggregate structure is key to the development of a particular 
human disease, failure to accurately target the relevant tau strain 
could result in a lack of efficacy in human trials.

Other key differences exist between mice and humans that 
may explain poor translation of mouse tau biology to therapeutics. 
Murine tau lacks 11 N-terminal amino acids that are present in the 
human version. These differences in the N-terminus affect tau secre-
tion, protein interaction, and tau phosphorylation (recently reviewed 
in ref. 86) and may limit the ability of mice to recapitulate nuanced 
features of disease critical to the development of therapeutics (86). 
On an organismal level, there are key and relatively unexplored dif-
ferences in CNS function between mice and humans. For example, 
microglia may contribute to neurodegenerative disease and show 
transcriptomic differences between mouse and human, particularly 
with age (87). Similarly, the blood-brain barrier transcriptome differs 
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glial tauopathy (GGT), AGD, and PSP. Particularly, a three-layered 
fold is noted in PSP and GGT, while a four-layer fold is noted in 
CBD and AGD (98, 99). Tau seeding models, mentioned above, 
support the idea that there are differences in tau conformers 
between pathologies. Experiments involving inoculation of 
human brain lysates from various tauopathies have revealed brain 
(neuronal or glial) lesions in mouse models or cell culture that dif-
ferentially resemble the original human pathology (100). These 
differences might contribute to differences in efficacy, safety, and 
tolerability in treatments across tauopathies, as seen in a recent 
basket trial testing a single intervention in multiple disease groups 
expressing a common biomarker of a microtubule stabilizer (101).

Small-molecule PTM inhibitors. Agents targeting tau PTMs, 
particularly hyperphosphorylation, have included protein kinase 
inhibitors that aim to reduce tau aggregation. All of the agents 
discussed below demonstrated signal in nonclinical models. 
Concerns with these agents have included potential lack of target 
specificity and potential for off-target effects. Over 90 phosphor-
ylation sites for tau exist, and specific interventions balancing 
efficacy with tolerability may be difficult to achieve. Glycogen 
synthase kinase 3β (GSK-3β) hyperactivity contributes to hyper-
phosphorylation, which has been considered the major target for 
pathologic aggregation (102). Lithium inhibits GSK-3β and was 
evaluated in 17 patients with PSP and corticobasal syndrome; 
however, it was poorly tolerated due to increased falls, and there-
fore the trial was stopped (ClinicalTrials.gov NCT00703677). 
Valproate was also assessed because of anti–GSK-3β activity, 
but did not improve PSP Rating Scale scores in 28 PSP patients 
over the course of 2 years (ClinicalTrials.gov NCT00385710) 
(103). Tideglusib, a novel small-molecule GSK-3β inhibitor, did 
not demonstrate evidence of efficacy in mild to moderate AD 
(ARGO, NCT01350362) or in PSP (TAUROS, NCT01049399) 
(104, 105). Another kinase implicated in tau hyperphosphoryla-
tion, Fyn, has been targeted by a small-molecule inhibitor (sara-
catinib) in a phase II trial of patients with mild AD (CONNECT, 
NCT02167256), which was stopped for lack of clinical efficacy 
and concern for gastrointestinal side effects (106).

O-GlcNAcylation (OGA) targeting may decrease hyperphos-
phorylation, and a small-molecule inhibitor (MK-8719) showed 
nonclinical mouse model signal in decreasing tau aggregation, 
but did not advance to phase II clinical trials in humans (107). 
Other OGA-targeting agents also await evaluation in phase II 
studies; however, LY3372689 is currently in a phase II AD trial 
(NCT05063539).

Tau acetylation can prevent physiologic clearance; salsalate, 
a small-molecule acetylation inhibitor, did not show a treatment 
effect in a futility study of 10 patients with PSP, nor was there evi-
dence of efficacy in a small randomized, placebo-controlled trial 
in mild to moderate AD (presented in abstract form at the Clinical 
Trials on Alzheimer’s Disease conference in 2022) (108, 109).

Tau aggregation disruption aims to prevent the paired heli-
cal filament conformation observed in NFTs, and a derivative of 
methylene blue (LMTM), which prevents this in mouse models, 
was evaluated in a phase III trial of behavioral variant FTD with-
out evidence of efficacy (110). Multiple phase III trials in AD, most 
recently LUCIDITY (NCT03446001), have also been negative 
based on prespecified analyses.

Microtubule stabilization designed to ameliorate putative loss 
of physiologic function has been attempted. Davunetide is derived 
from activity-dependent neurotrophic protein (ADNP), a neuro-
protective agent that decreased hyperphosphorylated tau in non-
clinical models through an unclear mechanism. It did not demon-
strate any clear benefits in randomized trials in 144 patients with 
mild cognitive impairment nor in 313 patients with PSP (111, 112). 
Abeotaxane (TPI-287), a microtubule stabilizer, produced ana-
phylactoid reactions in patients with AD but not PSP in a bas-
ket-design clinical trial with patients with AD and 4R tauopathies; 
it also led to a dose-related worsening of function and more fre-
quent falls in 4R tauopathies (101).

Antisense oligonucleotides (ASOs) are directed against MAPT 
mRNA to reduce tau expression. This strategy is based on data 
in mouse models showing that reducing human tau expression 
improves hippocampal volume loss and cognitive deficits (113). 
In this same work, CNS penetration was demonstrated in primate 
models. Results are pending in a study of tau lowering with ASO 
(BIIB080) in 64 patients with mild AD, but preliminarily ASO 
therapy reduced tau levels in cerebrospinal fluid (CSF), reduced 
MK-6240 tau PET uptake, and was well tolerated (114). A phase II 
trial in AD is now enrolling (NCT05399888), and a similar phase I 
trial with a different tau ASO is ongoing in PSP (NCT04539041).

Improvement of tau clearance has been assayed using proteol-
ysis-targeting chimera (PROTAC) molecules to selectively enhance 
ubiquitination and proteolysis of tau proteins, as demonstrated in 
nonclinical models, including patient-derived neural cell models 
(115, 116). There are no currently running human clinical trials.

Immune therapies. Both active (vaccine) and passive (mAb-me-
diated) immune therapies are being investigated in tauopathies.

AADvac1 was the first tau-directed vaccine tested in trials, 
employing a truncated version of the tau protein that was thought 
to be the pathogenic fragment in the MTBR triggering aggregation. 
Immunogenicity was demonstrated in a phase I trial, but unfortu-
nately in a phase II trial versus placebo in mild AD dementia, slowing 
of cognitive and functional decline was not demonstrated, although 
it slowed the increase in blood neurofilament light chain (117). 
Another trial of a liposome-based vaccine (ACI-35) targeted toward 
pathologic phosphorylation residues is under way (118).

Monoclonal antibodies targeting the N-terminal tau domain 
have been tested in multiple phase II trials, largely without clini-
cal benefit despite evidence for target engagement via reduction 
of N-terminal CSF tau. These trials have included gosuranemab 
(in PSP and early AD), tilavonemab (in PSP and AD), and zagoten-
emab (119). Notably, in a trial of mild-to-moderate AD (in contrast 
to prodromal to mild AD), semorinemab, also an N-terminal IgG4 
antibody, led to a 43.6% slowing of decline on the Alzheimer’s 
Disease Assessment Scale–Cognitive Subscale (ADAS-Cog) co–
primary outcome measure, in the absence of benefit for the other 
cognitive or functional outcomes. Whether this was due to chance 
or a true therapeutic effect is a topic of debate (phase II LAURI-
ET trial, NCT03828747). If true, it is unclear why a therapeutic 
effect was absent in an earlier phase of AD, but it could be hypoth-
esized that different species of tau more amenable to semorinem-
ab engagement predominate in later stages of the disease; there 
may be higher concentrations of N-terminal tau fragments in lat-
er-stage disease if they are related to the overall amount of cortical 
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tau pathology (soluble or insoluble). In addition, the mid-region, 
MTBR, and C-terminal tau–targeting antibodies bepranemab, 
E2814, LuAF87908, and JNJ-63733657 are in phase I–II trials and 
may have better clinical effect given the importance of the MTBR 
and C-terminus in tau aggregate structure.

Another possible reason for the lack of observed clinical ben-
efit in trials is that mAbs have targeted extracellular tau. This 
mechanism was thought to be valuable on the basis that extracel-
lular tau may undergo spread to other neurons (as demonstrated 
in nonclinical models). However, it is unknown whether recent 
tau mAbs have reached a high enough concentration in the brain 
parenchyma to affect these species, since there are no human 
biomarkers to measure soluble tau levels in the brain parenchy-
ma. By analogy to anti-amyloid antibodies, it may be necessary 
to activate immune-mediated clearance for efficacy, but most 
anti-tau mAbs tested have been IgG4 with reduced effector 
domain, which is the least effective isotype to promote microg-
lia phagocytosis (120). Further, to bypass systemic circulation 
and ensure cerebral delivery at correct levels, adeno-associat-
ed viral antibody delivery may be an avenue (121). Interesting-
ly, recent work demonstrated that tau immunotherapy may rely 
on the intracellular antibody receptor TRIM21 (122). Mice lack-
ing expression of TRIM21 were nonresponsive to tau-targeting 
immunotherapy both at an early stage of tau pathogenesis and 
during prolonged treatment, which may have implications for 
tau mAb treatment in human disease. Optimization of antibody 
characteristics, including isotype, epitope, charge, affinity, size, 
vehicle, and timing of delivery, may also be important for identi-
fying an efficacious approach (120).

It is also important to consider patient effects, including aging, 
on changes in effectiveness of immune therapies such as vaccina-
tion and antibody therapies, related to alterations in the B and T 
cell compartments termed immunosenescence (123). Decreased 
tau clearance related to aging, such as through the glymphatic sys-
tem, may also be therapeutically relevant; even if tau is targeted 
appropriately by therapies, it may still not be cleared (124). These 
phenomena should be accounted for in designing such therapies 
in tauopathies, perhaps with dose and schedule differences (125).

Tau biomarkers
In recent years, multiple in vivo biomarkers for tau pathology 
have been evaluated; these are key to detection of tau patholo-
gy, clinical trial enrollment, and assessment of the efficacy of tau 
therapeutics. These are overall better validated in AD than in oth-
er tauopathies. Currently, no biomarkers are approved for diag-
nosing non-AD tauopathies or for following the clinical course of 
any tauopathies.

The first tau PET tracer, [18F]flortaucipir, was approved for 
clinical use for the detection of AD by the US Food and Drug 
Administration (FDA) in May 2020 (126). This tracer was less sen-
sitive to tau related to FTLD spectrum disorders (127). Newer tau 
PET tracers, including [18F]PI2620, likely bind more selectively to 
hippocampal tau related to AD but may also have utility for identi-
fying 4R tauopathies (128, 129).

Fluid biomarkers for tau pathology include serum and CSF tau 
assays. Plasma p-tau181, p-tau217, and p-tau231 are promising and 
potentially more easily accessible biomarkers (130). In particular, 

plasma p-tau217 has shown utility in combination with tau PET for 
staging AD pathology (131, 132). Elevated CSF total tau and p-tau 
(most commonly p-tau181) are also suggestive of an AD pathology 
(133). Combining different markers, including Aβ and neurofilament 
light chain, can yield better discriminability of CSF tau for FTLD 
spectrum disorders (134). CBD may be distinguished from other 
tauopathies by incorporation of differences in specific CSF MTBR 
tau fragments, a finding that should be further explored (135).

Distinguishing AD from other tauopathies or identifying 
when they co-occur is important, as co-occurrence is common 
and may have therapeutic implications. One goal for future 
research is to design tau biomarkers with increased sensitivity 
and specificity for the early differential diagnosis of tauopathies 
and their longitudinal progression.

Next steps in designing tau-targeting therapies
In this Review, we have outlined multiple potential reasons for 
the lack of success to date in the tau-targeting therapies that have 
come to human clinical trials. These include poorly predictive 
nonclinical models, an inability to relate specific models to spe-
cific human diseases, targeting of the wrong tau species (N-termi-
nal tau) or pathogenic mechanism (phosphorylation), difficulty in 
designing the optimal immunologic approach, lack of biomarkers 
to diagnose early-stage tauopathies and to measure treatment 
response, the possibility that recent trials have started too late in 
the course of disease, and insufficient numbers of clinical trials in 
different human tauopathies that could respond differently to the 
same tau therapy.

It is clear that a novel approach to identifying and testing 
therapies in humans is needed. We know that nonclinical models 
are imperfect and that some phenomena studied in these models 
may not be therapeutically relevant to humans. Further, second-
ary effects of tau pathology, such as aggregation of other patho-
genic proteins and neuroinflammation, may not be addressed by 
therapies that solely target tau. Timing is also critical: it is possi-
ble that even mild cognitive impairment is too late with regard to 
the development of pathology leading to neurodegeneration in 
humans. Or perhaps, as suggested by semorinemab’s failure to 
slow progression of early and mild AD, it is too early?

There is an urgent need to bring therapies to the clinic setting 
for all patients with neurodegenerative disease, including tauopa-
thies. We believe it is time to refocus on “interventional” human 
research, as a departure from the current focus on therapeutic 
design, which entails years of expensive work on nonclinical mod-
els. Once therapeutic safety is established in early-phase trials, 
new approaches will be necessary to efficiently and effectively 
evaluate multiple therapeutic mechanisms in parallel. Training 
and departmental support for academic clinical trialists to carry 
out this work should be prioritized. Therapeutic classes and agents 
targeting different mechanisms can be tested in basket trials to 
enhance drug development efficiency by evaluating the effects 
of one therapy in multiple tauopathies (136). Umbrella trials of 
multiple agents in one disease also have utility in tauopathies, as 
exemplified by the current combination trial of anti-amyloid (lec-
anemab) and anti-tau (E2814) treatments in dominantly inherited 
AD (DIAN-TU) (137). Pragmatic trials, which assess effectiveness 
in the real-world clinic setting, of existing, repurposable drugs, 
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such as symptom-targeting medications, have been successfully 
conducted in other neurologic conditions and might also be priori-
tized (138). Disease progression models of existing data have been 
applied in rare familial FTD (MAPT mutation carriers) to leverage 
surrogate biomarker endpoints (neurofilament light chain and 
MRI) to select the optimal inclusion criteria and endpoints to max-
imize power to detect treatment effects (139).

There are gaps in our understanding of the pathobiology of 
tauopathies, but regardless, an overwhelming amount of circum-
stantial evidence implicates tau protein as a driver of human dis-
ease, particularly in the primary tauopathies. As the science of tau 
therapy and clinical trials advances, there are likely to be import-
ant and unexpected insights into the pathogenic mechanisms of 
tauopathies that will identify novel agents that should be effi-
ciently tested in clinical trials. Overall, we are optimistic about the 
future of tau-targeted therapies and our ability as a field to bring 
them to patients, as we continue to refine our understanding of tau 
biology and drug development.
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